skip to main content


Search for: All records

Creators/Authors contains: "Stone, James M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The coupling state between ions and neutrals in the interstellar medium plays a key role in the dynamics of magnetohydrodynamic (MHD) turbulence, but is challenging to study numerically. In this work, we investigate the damping of MHD turbulence in a partially ionized medium using 3D two-fluid (ions + neutrals) simulations generated with the athenak code. Specifically, we examine the velocity, density, and magnetic field statistics of the two-fluid MHD turbulence in different regimes of neutral-ion coupling. Our results demonstrate that when ions and neutrals are strongly coupled, the velocity statistics resemble those of single-fluid MHD turbulence. Both the velocity structures and kinetic energy spectra of ions and neutrals are similar, while their density structures can be significantly different. With an excess of small-scale sharp density fluctuations in ions, the density spectrum in ions is shallower than that of neutrals. When ions and neutrals are weakly coupled, the turbulence in ions is more severely damped due to the ion-neutral collisional friction than that in neutrals, resulting in a steep kinetic energy spectrum and density spectrum in ions compared to the Kolmogorov spectrum. We also find that the magnetic energy spectrum basically follows the shape of the kinetic energy spectrum of ions, irrespective of the coupling regime. In addition, we find large density fluctuations in ions and neutrals and thus spatially inhomogeneous ionization fractions. As a result, the neutral-ion decoupling and damping of MHD turbulence take place over a range of length-scales.

     
    more » « less
  2. Abstract

    The inner few parsecs of the Milky Way’s Galactic center contain the central accreting supermassive black hole, over a million stars, and multiple large gaseous structures. In the past, the structures at these length scales have generally been modeled independently of each other. It is consequently not well understood how these complex features interact with each other, nor how gas flows between the outer few parsecs and the inner subarcsecond region (1″ ≈ 0.04 pc). In this work, we present hydrodynamic simulations of the inner few parsecs of the Galactic center that, for the first time, combine a realistic treatment of stellar winds and the circumnuclear disk (CND) as they interact with the gravitational potential of the nuclear star cluster and Sagittarius A*. We observe interactions of the stellar winds with the inner edge of the CND, which leads to the growth of instabilities, induced accretion of cool gas from the inner edge of the disk, and the eventual formation of a small accretion disk of ∼104–105K withinr∼ 0.1 pc. The formation of an inner disk qualitatively agrees with observations. This disk grows in radial extent and mass with time on ≳10 kyr timescales, with a growth rate ofMtkyr3.5. We discuss additional physical mechanisms not yet included in this work that can improve our model.

     
    more » « less
  3. Abstract We present high-resolution, three-dimensional hydrodynamic simulations of the fueling of supermassive black holes in elliptical galaxies from a turbulent medium on galactic scales, taking M87* as a typical case. The simulations use a new GPU-accelerated version of the Athena++ AMR code, and they span more than six orders of magnitude in radius, reaching scales similar to that of the black hole horizon. The key physical ingredients are radiative cooling and a phenomenological heating model. We find that the accretion flow takes the form of multiphase gas at radii less than about a kpc. The cold gas accretion includes two dynamically distinct stages: the typical disk stage in which the cold gas resides in a rotationally supported disk, and relatively rare chaotic stages (≲10% of the time) in which the cold gas inflows via chaotic streams. Though cold gas accretion dominates the time-averaged accretion rate at intermediate radii, accretion at the smallest radii is dominated by hot virialized gas at most times. The accretion rate scales with radius as M ̇ ∝ r 1 / 2 when hot gas dominates, and we obtain M ̇ ≃ 10 − 4 – 10 − 3 M ⊙ yr − 1 near the event horizon, similar to what is inferred from EHT observations. The orientation of the cold gas disk can differ significantly on different spatial scales. We propose a subgrid model for accretion in lower-resolution simulations in which the hot gas accretion rate is suppressed relative to the Bondi rate by ∼ ( r g / r Bondi ) 1 / 2 . Our results can also provide more realistic initial conditions for simulations of black hole accretion at the event horizon scale. 
    more » « less
  4. null (Ed.)
    ABSTRACT In the cold neutral medium, high out-of-equilibrium temperatures are created by intermittent dissipation processes, including shocks, viscous heating, and ambipolar diffusion. The high-temperature excursions are thought to explain the enhanced abundance of CH+ observed along diffuse molecular sightlines. Intermittent high temperatures should also have an impact on H2 line luminosities. We carry out simulations of magnetohydrodynamic (MHD) turbulence in molecular clouds including heating and cooling, and post-process them to study H2 line emission and hot-gas chemistry, particularly the formation of CH+. We explore multiple magnetic field strengths and equations of state. We use a new H2 cooling function for $n_{\text{H}}\le 10^5\, {\text{cm}}^{-3}$, $T\le 5000\, {\text{K}}$, and variable H2 fraction. We make two important simplifying assumptions: (i) the H2/H fraction is fixed everywhere and (ii) we exclude from our analysis regions where the ion–neutral drift velocity is calculated to be greater than 5 km s−1. Our models produce H2 emission lines in accord with many observations, although extra excitation mechanisms are required in some clouds. For realistic root-mean-square (rms) magnetic field strengths (≈10 μG) and velocity dispersions, we reproduce observed CH+ abundances. These findings contrast with those of Valdivia et al. (2017) Comparison of predicted dust polarization with observations by Planck suggests that the mean field is ≳5 µG, so that the turbulence is sub-Alfvénic. We recommend future work treating ions and neutrals as separate fluids to more accurately capture the effects of ambipolar diffusion on CH+ abundance. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    ABSTRACT FU Ori is the prototype of FU Orionis systems that are outbursting protoplanetary discs. Magnetic fields in FU Ori’s accretion discs have previously been detected using spectropolarimetry observations for Zeeman effects. We carry out global radiation ideal MHD simulations to study FU Ori’s inner accretion disc. We find that (1) when the disc is threaded by vertical magnetic fields, most accretion occurs in the magnetically dominated atmosphere at z ∼ R, similar to the ‘surface accretion’ mechanism in previous locally isothermal MHD simulations. (2) A moderate disc wind is launched in the vertical field simulations with a terminal speed of ∼300–500 km s−1 and a mass-loss rate of 1–10 per cent the disc accretion rate, which is consistent with observations. Disc wind fails to be launched in simulations with net toroidal magnetic fields. (3) The disc photosphere at the unit optical depth can be either in the wind launching region or the accreting surface region. Magnetic fields have drastically different directions and magnitudes between these two regions. Our fiducial model agrees with previous optical Zeeman observations regarding both the field directions and magnitudes. On the other hand, simulations indicate that future Zeeman observations at near-IR wavelengths or towards other FU Orionis systems may reveal very different magnetic field structures. (4) Due to energy loss by the disc wind, the disc photosphere temperature is lower than that predicted by the thin disc theory, and the previously inferred disc accretion rate may be lower than the real accretion rate by a factor of ∼2–3. 
    more » « less
  7. null (Ed.)